
DASP3rd Chapter 4 - Exercises

1 Oversampling

1. How do we define the power spectral density (PSD) SXX(ejΩ) of a signal x(n)?

Solution:

- Measure of how the power in a sequence x(n) is distributed over frequency

- Defined as Fourier Transform of the auto-correlation sequence rXX(n) of the discrete-
time sequence given by

SXX
(
ejΩ
)

=
∞∑

n=−∞

rXX(n) · e−jΩn.

2. What is the relationship between signal power σ2
X (variance) and power spectral density

SXX(ejΩ)?

Solution:

- The relationship is given by PARSEVAL THEOREM

(actually this is a special case of the WIENER-KHINTCHINE THEOREM for n = 0)

σ2
X =

∞∑
n=−∞

(x(n))2 = rXX(0) =
1

2π

π∫
−π

SXX
(
ejΩ
)
dΩ

⇒ Energy of a signal in time domain = energy in frequency domain!

3. Why do we need to oversample a time-domain signal?

Solution:

- To avoid aliasing in the frequency domain. As an example some non-linear operations
generate harmonics that go above the Nyquist frequency. Oversampling can avoid that
problem by increasing temporarily the sampling frequency.

4. Explain why an oversampled pulse-code modulation (PCM) AD converter has lower quanti-
zation noise power in the baseband than a Nyquist-rate sampled PCM AD converter?

Solution:

- PSD of quatization error

SEE(f) =
Q2

12fS
→ see Book, Eq. (4.1)

- For Nyquist sampling fS = 2fB the noise power in audio band leads to

N2
B = σ2

E = 2 ·
fB∫
0

SEE(f)df = 2 · Q2

12 · 2fB
· [fB − 0] → σ2

E =
Q2

12
.
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- For oversampling by factor L→ fS = L · 2fB:

N2
B = σ2

E = 2 · Q2

12 · L · 2fB
· [fB − 0] → σ2

E =
Q2

12L

→ Noise power in the audio band is L-times lower!

5. How do we perform oversampling by a factor of L in the time domain?

Solution: L = 3

x(n)

n
0 1 2 3

x(t)

x(n)

n
0 1 2 3 4 5 6 7 8 9

Nyquist Sampling Oversampling by L

6. Explain the frequency domain interpretation of the oversampling operation.

Solution:

f

X(f)

0 fs

fs/2

Q

image
spectrum

fB

Nyquist Sampling

f

X(f)

0 Lfs

Q

image
spectrum

fB

Oversampling by L

Lfs-fB

7. What is the passband and stopband frequency of the analog anti-aliasing filter?

Solution:

- Humans are able to perceive frequencies up to 20 kHz

* fB = 20 kHz,→ fpass = fB (passband)
* fstop = fS − fS

2
= fS

2
(stopband)

* ftrans = fstop−fpass = fS
2
−fB = 2.05 kHz for fS = 44.1 kHz (transition band)

* To avoid aliasing, an analog filter with high slope is required (narrow transition
band)!

- Using oversampling the analog filter can have lower order!

* fB = 20 kHz,→ fpass = fB (passband, remains the same)
* fstop = L · fS − fS

2
(stopband)

* ftrans = fstop − fpass = L · fS − fS
2
− fB (large transition band)
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8. What is the passband and stopband frequency of the digital anti-aliasing filter before down-
sampling?

Solution:

- Passband remains fpass = fB

- Stopband changes fstop = fS
2

9. How is the downsampling operation performed (time domain and frequency domain explana-
tion)?

Solution:

- Downsampling by factor L:

* Time domain: take every Lth sample
* Frequency domain: image spectrum is moved from [L·fS− fS

2
, L·fS] to [fS− fS

2
, fS],

which is explained by Eq. (3.17) in Chapter 3.
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2 Delta-sigma Conversion

1. Why can we apply noise shaping in an oversampled AD converter?

Solution:

- The quantization noise in an oversampled AD converter is spread from 0 up to LfS . This
oversampling allows the noise shaping applied to the quantizer. Thus the quantization
noise in the audio band is suppressed and shifted to the frequency region above 20 kHz.

2. Show how the delta-sigma converter (DSC) has a lower quantization noise in the audio band
than an oversampled PCM AD converter?

Solution:

- Let us consider the variance for the input and the quantization error after oversampling

to be defined as σ2
X =

(
xmax

PF

)2

, and σ2
E = Q2

12L
.

One can see from the formula that the PSD and the variance for first, second and third
order can be generalized as
SEkEk

(
ejΩ
)

= SEE
(
ejΩ
) ∣∣1− e−jΩ∣∣2k and σ2

Ek
= N2

B = Q2

12
π2k

(2k+1)L2k+1 .

Since we know that Q = 2xmax

2w
→ x2

max = Q222w

22 and assuming PF =
√

3 we can derive
the SNR for every order of the noise shaping topology according to

SNR = 10 log10

(
σ2
X

σ2
E

)
= 10 log10

((
xmax
PF

)2
12(2k + 1)L2k+1

Q2π2k

)

= 10 log10

(
Q222w

223

12(2k + 1)L2k+1

Q2π2k

)
= 10 log10

(
22w (2k + 1)L2k+1

π2k

)
= 6.02w + 10 log10

(
2k + 1

π2k

)
+ (2k + 1)10 log10 (L) see Eq. (4.25)

3. How are the power spectral density (PSD) and the variance change related to the order of the
DSC?

Solution:

- In the following we will show how the formula for PSD and variance have been cal-
culated and then derive the general formula for the PSD and the variance based on the
order of the noise shaper. The first-order DSC has the following PSD given by

SE1E1

(
ejΩ
)

= SEE
(
ejΩ
) ∣∣1− e−jΩ∣∣2 = SEE

(
ejΩ
) ∣∣∣e−j Ω

2 ej
Ω
2 − e−j

Ω
2 e−j

Ω
2

∣∣∣2
= SEE

(
ejΩ
) ∣∣∣e−j Ω

2

∣∣∣2 ∣∣∣ej Ω
2 − e−j

Ω
2

∣∣∣2 = SEE
(
ejΩ
) ∣∣∣e−j Ω

2

∣∣∣2 ∣∣∣∣2j sin

(
Ω

2

)∣∣∣∣2
= SEE

(
ejΩ
)

4 sin2

(
Ω

2

)
.

The general formula for the PSD can be written as

SEkEk

(
ejΩ
)

= SEE
(
ejΩ
) ∣∣1− e−jΩ∣∣2k .
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With Ω = 2πf
LfS

and SEE(f) = Q2

12LfS
we can give the noise power in audio band (the

variance σ2
E) as

N2
B = σ2

E = SEE(f)2

∫ fB

0

4 sin2

(
πf

LfS

)
df see Eq. (4.10).

Using
∫

sin2 (af) df = f
2
− 1

4a
sin (2af) and a = π

LfS
we can write

N2
B =

8Q2

12LfS

[
f

2
− 1

4a
sin (2af)

]fB
0

.

With sin(f) = f − f3

3!
we get

N2
B =

8Q2

12LfS

[
f

2
− 1

4a

(
2af − 23a3f 3

6

)]fB
0

=
8Q2

12LfS

[
f

2
− f

2
+
a2f 3

3

]fB
0

=
8Q2

12LfS

[
a2f 3

3

]fB
0

=
Q2

12LfS

a223f 3
B

3
=
Q2

12

π223f 3
B

3 (L3f 3
S)

=
Q2

12

π2(2fB)3

3 (L3f 3
S)

=
Q2

12

π2(fS)3

3 (L3f 3
S)

=
Q2

12

π2

3L3
.

We can then generalize this formula for all orders k as

N2
B =

Q2

12

π2k

(2k + 1)L2k+1
.

4. How is noise shaping achieved in an oversampled delta-sigma DA converter?

Solution:

z-1+ ++
x(n) y(n)

e(n)

u(n) v(n)
-

y(n) = v(n) + e(n) → v(n) = y(n)− e(n)

u(n) = x(n)− y(n)

v(n) = u(n− 1) + v(n− 1) = x(n− 1)− y(n− 1) + v(n− 1)

y(n) = x(n− 1)− y(n− 1) + v(n− 1) + e(n)

= x(n− 1)− y(n− 1) + y(n− 1)− e(n− 1) + e(n)

= x(n− 1) + e(n)− e(n− 1)

Y (z) = X(z) · z−1 + E(z) ·
(
1− z−1

)
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5. Show the noise-shaping effect (with Matlab plots) of a delta-sigma modulator and how the
improvement of the SNR for pure oversampling and delta-sigma modulation is achieved.

Solution:

- see Matlab script ’dasp_ex4_2_5’
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6. Using the previous Matlab plots, specify which order and oversampling factor L will be
needed for a 1-bit delta-sigma converter for SNR = 100 dB.

Solution:

- By looking on the plot of the previous question. One can se that for a minimum of 100dB
SNR one needs:

- DSM first order: x = 11⇒ L = 1048

- DSM second order: x = 8⇒ L = 256

- DSM third order: x = 6⇒ L = 64
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7. What is the difference between the delta-sigma modulator in the delta-sigma AD converter
and the delta-sigma DA converter?

Solution:

- They are equal, except for the implementation domain (analog or digital)

z-1+ ++
x(n) y(n)

e(n)

-

Quantizer

Integrator

+
x(t) y(n)

-

Quantizer

Integrator

1
s

Lfs

8. How do we achieve a w-bit signal representation at Nyquist sampling frequency from an over-
sampled 1-bit signal?

Solution:

- Using a digital FIR lowpass filter with coefficients h0... hN−1 which have a w-bit word
length

- Summation of the filter coefficients h0... hN−1 weighted by 1 or 0 of the input sequence
leads to a w-bit output signal

z-1 z-1 z-1

+ + +

+ +

h1

+

x(n)

y(n)

+h0 h2 hN-1

1 bit

w bit

9. Why do we need to oversample a w-bit signal for a delta-sigma DA converter?

Solution:

- The oversampling up to a sampling rate LfS allows the use of a noise shaper at the
oversampling rate.

- The 1-bit output of the quantizer needs only a following analog lowpass filter to suppress
the shaped quantization noise and the image spectra.
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